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Abstract—We consider the use of neural networks and 

Hamilton-Jacobi-Bellman equations towards obtaining 
fixed-final time optimal control laws in the input nonlinear 
systems. The method is based on Kronecker matrix methods 
along with neural network approximation over a compact set 
to solve a time-varying Hamilton-Jacobi-Bellman equation. 
The result is a neural network feedback controller that has 
time-varying coefficients found by a priori offline tuning. 
Convergence results are shown. The results of this paper are 
demonstrated on two examples. 
Keywords:   Finite-horizon optimal control, 
Hamilton-Jacobi-Bellman, Neural Network control 

I. INTRODUCTION 
he solution of the Hamilton-Jacobi-Bellman (HJB) 
equation resulting in finite-time optimal control laws 

for nonlinear systems is a challenging problem. It is known 
that this optimization problem [16], requires solving a 
time-varying HJB equation that is hard to solve in most 
cases. Approximate HJB solutions have been confronted 
using many techniques such as those developed by Saridis 
and Lee [27], Beard et. Al [4][5][6], Beard, Bertsekas and 
Tsitsiklis [7], Munos et. al [22], Kim, Lewis and Dawson 
[14], Liu and Balakrishnan [17], Lyshevski and Meyer [20] 
and Lyshevski [18][19]. Huang and Lin [13] provided a 
Taylor series expansion of the HJI equation which is closely 
related to the HJB equation. 

Successful neural networks (NN) controllers not based 
on optimal techniques have been reported in Chen and Liu 
[8], Lewis, Jagannathan and Yesildirek [15], Polycarpou 
[24], Rovithakis and Christodoulou [25], Sanner and Slotine 
[26], Ge [11]. It has been shown that NN can effectively 
extend adaptive control techniques to nonlinearly 
parameterized systems. NN applications to an optimal 
control via the HJB equation were first proposed by Werbos 
[21]. Parisini and Zoppoli [23] used NN to derive optimal 
control laws for discrete-time stochastic nonlinear systems. 

In this paper, we use NN to approximately solve the 
time-varying HJB equation employing a nonquadratic 
functional. It is shown that using a NN approach, one can 
simply transform the problem into solving an ordinary 
differential equation (ODE) equation backwards in time. 
The coefficients of this ODE are obtained by the weighted 
residuals method. 

Motivated by the important results in [4], we are able 
to approximately solve the time-varying HJB equation 
without policy iteration using the so-called GHJB equation 
followed by control law updates. We accomplish this by 
using a neural network approximation for the value function 
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which is based on a universal basis set.  

II. PROBLEM STATEMENT 
Consider an affine in the control nonlinear dynamical 
system of the form 

)()()( tuxgxfx +=& ,                        (1) 

where nx ℜ∈ , nxf ℜ∈)( , mnxg ×ℜ∈)(  and the input 

( ) mRtu ∈ . The dynamics ( )xf  and ( )xg  are assumed to 
be known. Assume that guf +  is Lipschitz continuous on 

a set nℜ⊆Ω  containing the origin, and that system (1) is 
stabilizable in the sense that there exists a continuous 
control on Ω  that asymptotically stabilizes the system. It 
is desired to find the control u  that minimizes a 
generalized nonquadratic functional 

[ ]∫ ++=
ft

t
ff dtuWxQttxttxV

0

)()()),(()),(( 00 φ   (2) 

with )(xQ , )(uW  positive definite on Ω , i.e. 0≠∀x , 
Ω∈x , 0)( >xQ  and 0)(0 =⇒= xQx . A common 

choice for RuuuW T=)( , where 0>R . The final time 

ft  is fixed. 
 

Definition 1. Admissible Controls. 
A control u  is defined to be admissible with respect to (2) 
on Ω , denoted by )(ΩΨ∈u , if u  is continuous on Ω , 

0)0( =u , u  stabilizes (1) on Ω , and Ω∈∀ 0x , )( 0xV  
is finite.                                     ■ 

 

Definition 2. Sobolev Space.  

( )ΩpmH , : Let Ω  be an open set in nℜ  and let 

( )Ω∈ mCu . Define a norm on u  by 

( )∑ ∫
≤≤

Ω
⎟
⎠
⎞

⎜
⎝
⎛=

m

pp

pm dxxuDu
α

α

0

1

, ,   ∞<≤ p1 . 

This is the Sobolev norm in which the integration is 
Lebesgue. The completion of ( )Ω∈ mCu :   ∞<pmu ,  

with respect to pm,⋅  is the Sobolev space ( )ΩpmH , . For 

2=p , the Sobolev space is a Hilbert space.        ■ 
The convergence proofs of the least-squares method 

are done in the Sobolev function space ( )Ω2,1H  setting 
[2], since we require to prove the convergence of both 

( )xVL  and its gradient. 
An infinitesimal equivalent to (2) is [16] 

T 
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This is a time-varying partial differential equation. It is in 
fact a Lyapunov equation that yields the value V  for any 
given u  and is solved backward in time from ftt = . By 

setting ftt =0  in (2) its boundary condition is seen to be 

( )( ) ( )( )ffff ttxttxV ,, φ= .                    (4) 
According to Bellman’s optimality principle [16], the 

optimal cost is given by 
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which yields the optimal control. 

( )
dx

dVgRxu T
*

1*

2
1 −−= ,                     (6) 

where ( )xV *  is the optimal value function. Substituting (6) 
into (5) yields the well-known time-varying HJB equation 
[16] 
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This equation and (6) provide the solution to fixed-final 
time optimal control for general nonlinear systems. 
However, this equation is generally impossible to solve. 

III. NONLINEAR FIXED-FINAL-TIME HJB SOLUTION BY NN 
LEAST-SQUARES APPROXIMATION 

The HJB equation (7) is difficult to solve for the cost 
function ( )xV . In this section, neural networks are used to 
solve approximately for the value function in (7) over Ω  
by approximating the cost function ( )xV . The result is an 
efficient, practical, and computationally tractable solution 
algorithm to find nearly optimal state feedback controllers 
for nonlinear systems. 

A NN Approximation of ( )xV  

It is well known that NN can be used to approximate 
smooth functions on prescribed compact sets (Hornik [12]). 
Since the analysis required here is restricted to the region of 
asymptotically stable (RAS) of some initial stabilizing 
controller, NN are natural for this application. We use the 
following equation to approximate V  

( ) ( ) ( ) ( )xtwxwxV L
T
L

L

j
jjL σσ ==∑

=1

,            (8) 

which is a NN with activation functions ( ) ( )Ω∈ 1Cxjσ , 

( ) 00 =jσ . The NN weights are ( )tw j  and L  is the 
number of hidden-layer neurons. 

( ) ( ) ( ) ( )[ ] T
LL xxxx σσσ ...21≡σ  is the vector of activation 

function, ( ) ( ) ( ) ( )[ ]TLL twtwtwt ...21≡w  is the vector of NN 

weights.  
Since one requires t

V
∂

∂  in (7), the NN weights are 

selected to be time-varying. This is similar to methods such 
as assumed mode shapes in the study of flexible mechanical 
systems [3]. However, here ( )xLσ  is a NN activation 
vector, not a set of eigenfunctions. That is, the NN 
approximation property significantly simplifies the 
specification of ( )xLσ . For the infinite final time case, the 
NN weights are constant [1]. The NN weights will be 
selected to minimize a residual error in a least-squares sense 
over a set of points sampled from a compact set Ω  inside 
the RAS of the initial stabilizing control [10]. 

Note that 
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where Lσ∇  is the Jacobian x
L

∂
∂σ , and that 
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t

V
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Therefore approximating ( )xV  by ( )xVL  in the HJB 
equation (7) results in 
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or 
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where ( )xeL  is a residual equation error. From (6) the 
corresponding control input is 

( ) ( ) ( ) ( )txxgRtu L
T

L
T

L wσ∇−= −1

2
1 .          (13) 

To find the least-squares solution for ( )tLw , the 
method of weighted residuals is used [10]. The weight 
derivatives ( )tLw&  are determined by projecting the 

residual error onto ( )
( )td

xde
L

L
w&

 and setting the result to 

zero Ω∈∀x  using the inner product, i.e. 
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From (11) we can get 
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So that 
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(17) 
with boundary condition ( ) ( )( )fff ttxxtV ,, φ= . 
Therefore, the NN weights are simply found by integrating 
this nonlinear ODE backwards in time. 

Following two lemmas show that this procedure 
provides a nearly optimal solution for the time-varying 
optimal control problem if time-varying L  is selected 
large enough. 
 

Lemma 1. Convergence of Approximate Value Function. 
If Ω  is compact, ( )xQ  are continuous on Ω  and are in 

the space { }∞
1jspan σ , and if the coefficients ( )tw j  are 

uniformly bounded for all L , then 

( ) 0
2

→− ΩLL VV  as L  increases. 

Proof. See [9].                                   ■ 
 

Lemma 2. Convergence of Value Function Gradient. 
Under the hypothesis of Lemma 1, 

( )
0

2

→−
ΩL

L
dx

dV
dx

dV  as L  increases. 

Proof. See [9].                             ■ 
At this point we have proven convergence in the mean 

of the approximate value function and the value function 
gradient. This demonstrates convergence in the mean in 
Sobolev space ( )Ω2,1H . 
 
Lemma 3. Admissibility of ( )xuL . 
If the conditions of Lemma 1  are satisfied, then 

( )ΩΨ∈≥∃ LuLLL ,: 00 . 

Proof. Define 

( ) ( )( ) ( ) ( )[ ]∫ ++=
ft

t
ff dtuWxQttxWxV

0

,, φ . 

We must show that for L  sufficiently large, ( ) ∞<LuxV ,  
when ( ) ∞<uxV , . But ( )( )ff ttx ,φ  depends continuously 
on W , i.e., small variations in W  result in small 

variations in φ . Also since ( ) ( )
2

2 Ω⋅ LLu  can be made 

arbitrarily close to ( ) ( )
2

2 Ω⋅ Lu , ( )LuxV ,  can be made 

arbitrarily close to ( )uxV , . Therefore for L  sufficiently 
large, ( ) ∞<LuxV ,  and hence ( )xuL  is admissible.              
                 ■ 

Lemma 3 shows that if the number L  of hidden layer 
units is large enough, the proposed solution method yields 
an admissible control. 
 

B Optimal Algorithm Based on NN Approximation 
Solving the integration in (16) is expensive computationally. 
Since evaluation of the 2L  inner product over Ω  is 
required. This can be addressed using the collocation 
method [10]. The integrals can be well approximated by 
discretization. A mesh of points over the integration region 
can be introduced on Ω  of size xΔ . The terms of (16) 
can be rewritten as follows 
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( ) ( )[ ] TxQxQD
p1 xx |...|= ,                   (21) 

where p  in px  represents the number of points of the 
mesh. Reducing the mesh size, we have 
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This implies that (16) can be converted to 
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This is a nonlinear ODE that can easily be integrated 
backwards using final condition ( )fL tw  to find the 
least-squares optimal NN weights. Then, the nearly optimal 
value function is given by 

( ) ( ) ( )xttxV L
T
LL σw=, , 

and the nearly optimal control by 

( ) ( ) ( ) ( )txxgRtu L
T
L

T
L wσ∇−= −1

2
1 .           (27) 

Note that in practice, we use a numerically efficient 
least-squares relative to solve (26) without matrix inversion. 



IV. ILLUSTRATIVE EXAMPLE 
We now show the power of our NN control technique for 
finding nearly optimal fixed-final time controllers. Consider 
the following linear system 

2212

1211

265
32

uxxx
uxxx

++=
++=

&

&
.                      (28) 

Define performance index 

( )( ) ( ) ( ) ( ) ( )∫ ++=
T
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TT
ff

T
f dtRuuQxxtxtStxttxV

02
1

2
1, 00 .

Here Q  and R  are chosen as identity matrices. The 
steady-state solution of the Riccati equation can be obtained 
by solving the algebraic Riccati equation (ARE). The result 

is ⎥
⎦

⎤
⎢
⎣

⎡
6777.38234.2
8234.21610.3

. Our algorithm should give the same 

steady-state value. 
To find a nearly optimal time-varying controller, the 
following smooth function is used to approximate the value 
function of the system 

( ) 2
23212

2
1121, xwxxwxwxxV ++= . 

This is a NN with polynomial activation functions, and 
hence ( ) 00 =V .  

Note that if PxxV T= , then 
⎥
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In this example, three neurons are chosen and 
( ) [ ]0,10,10=fL tw . Our algorithm was used to determine 

the nearly optimal time-varying control law by backwards 
integrating to solve (26). A least-square algorithm was used 
to compute ( )tLw&  at each integration time. From figure 1 

it is obvious that about six seconds from ft , the weights 
converge to the solution of the algebraic Riccati equation. 
The control signal is 

PxgRu T1

2
1 −−= .                         (29) 

The states and control signal are shown in Figures 2 and 3. 
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Fig. 1. Linear System Weights 
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Fig. 2: State Trajectory of Linear System 
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Fig. 3: Optimal NN Control Law 

 

V. CONCLUSION 
We use NN to approximately solve the time-varying HJB 
equation. The technique can be applied to both linear and 
nonlinear systems. Full conditions for convergence have 
been derived. Simulation examples have been carried out to 
show the effectiveness of the proposed method. 
 

REFERENCES 
[1] Abu-Khalaf, M., Lewis, F. L., “Nearly optimal control laws for 

nonlinear systems with saturating actuators using a neural network 
HJB approach”, Automatica, 41, 2005. 

[2] Adams, R., Fournier, J., “Sobolev spaces”, 2nd ed., New York: 
Academic Press, 2003. 

[3] Balas, M. J., “Modal control of certain flexible dynamic systems”, 
SIAM J. Control and Optimization, Vol 16, No. 3, pp. 450-462,1978. 

[4] Beard, R., Improving the Closed-Loop Performance of Nonlinear 
Systems, PhD thesis, Rensselaer Polytechnic Institute, Troy, NY 
12180, 1995. 

[5] Beard, R., Saridis, G., Wen, J., “Galerkin Approximations of the 
Generalized Hamilton-Jacobi-Bellman Equation,” Automatica, Vol. 
33, December, pp. 2159-2177,1997. 

[6] Bernstein, D. S., “Optimal nonlinear, but continuous, feedback 
control of systems with saturating actuators,” International Journal 
of Control, Vol 62, No. 5, pp. 1209-1216. 

[7] Bertsekas, D. P., Tsitsiklis, J. N., “Neuro-Dynamic Programming: An 
Overview,” Proc. IEEE Conference on. Decision and Control, pp. 



560-564, December 1995 
[8] Chen, F. C. and Liu, C. C., “Adaptively controlling nonlinear 

continuous-time systems using multiplayer neural networks”, IEEE 
Trans. Automat. Control, vol. 39, No. 6, pp. 1306-1310, June 1994. 

[9] Cheng, T., Frank, L. L., Abu-Khalaf, M., “A Neural Network 
Solution for Fixed-Final Time Optimal Control of Nonlinear 
Systems”, Submitted to Automatica. 

[10] Finlayson, B. A., The method of weighted residuals and variational 
principles, New York: Academic Press, 1972 

[11] Ge, S. S., “Robust adaptive NN feedback linearization control of 
nonlinear systems”, International Journal of Systems Science, Vol. 27, 
No. 12, pp. 1327-1338, 1996. 

[12] Hornik, K., Stinchcombe, M., White, H., “Universal approximation 
of an unknown mapping and its derivatives using multilayer 
feedforward networks. Neural Networks, 3, 551-560, 1990. 

[13] Huang, J., Lin, C. F., “Numerical approach to computing nonlinear 

∞H  control laws”, Journal of Guidance, Control, and Dynamics, 
18 (5), 989-994, 1995. 

[14] Kim, Y. H., Lewis, F. L., Dawson. D., “Intelligent optimal control of 
robotic manipulators using neural networks,” Automatica 36, pp. 
1355-1364, 2000. 

[15] Lewis, F. L., Jagannathan, S., Yesildire, A., Neural Network Control 
of Robot Manipulators and nonlinear Systems, Taylor & Francis, 
1999. 

[16] Lewis, F. L., Syrmos, V. L., Optimal Control, John Wiley & Sons, Inc. 
New York, NY, 1995. 

[17] Liu, X., Balakrishnan, S. N., “Adaptive Critic Based 
Neuro-Observer,” Proc. American Control Conference, pp. 
1616-1621, June. 2001 

[18] Lyshevski, S. E., Control Systems Theory with Engineering 

Applications, Birkhauser, Boston, MA, 2001. 
[19] Lyshevski, S. E., “Optimal Control of Nonlinear Continuous-Time 

Systems: Design of Bounded Controllers Via Generalized 
Nonquadratic Functionals,” Proc. American Control Conference, pp. 
205-209, June. 1998. 

[20] Lyshevski, S. E., Meyer, A. U., “Control System Analysis and Design 
Upon the Lyapunov Method,” Proc. American Control Conference, 
pp. 3219-3223, June. 1995. 

[21] Miller, W. T., Sutton, R., Werbos, P., Neural Networks for Control, 
The MIT Press, Cambridge, Massachusetts, 1990. 

[22] Munos, R., Baird, L. C., Moore, A., “Gradient Descent Approaches 
to Neural-Net-Based Solutions of the Hamilton-Jacobi-Bellman 
Equation,” International Joint Conference on Neural Networks, Vol. 
3, pp. 2152-2157, 1999. 

[23] Parisini, T., Zoppoli, R. “Neural Approximations for Infinite-Horizon 
Optimal Control of Nonlinear Stochastic Systems”, IEEE Trans 
Neural Net. Vol. 9, No. 6, pp. 1388-1408, November 1998. 

[24] Polycarpou, M. M., “Stable adaptive neural control scheme for 
nonlinear systems”, IEEE Trans. Automat. Control, vol. 41, No. 3, pp. 
447-451, Mar 1996. 

[25] Rovithakis, G. A. and Christodoulou, M. A., “Adaptive control of 
unknown plants using dynamical neural networks”, IEEE Trans. 
Systems, Man, and Cybernetics, vol. 24, No. 3, pp. 400-412, 1994. 

[26] Sanner, R. M. and Slotine, J. J. E., “Stable adaptive control and 
recursive identification using radial gaussian networks,” Proc. IEEE 
Conf. Decision and Control, pp. 2116-2123, Brighton, 1991. 

[27] Saridis, G., Lee, C. S., “An Approximation Theory of optimal Control 
for Trainable Manipulators”, IEEE Trans. Systems, Man, Cybernetics, 
Vol. 9, No. 3, pp. 152-159, March 1979. 

 
 


	183179.pdf
	Main Menu
	General Information
	Program
	Index of Authors




